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Abstract

The spatio-temporal scaling relationship for individual channels in braided streams is shown to be identical to the spatio-

temporal scaling associated with constant Froude number, e.g. FrZ1. A means to derive this relationship is developed from a

new theory of sediment transport. The mechanism by which the FrZ1 condition apparently governs the scaling seems to derive

from the sensitivity of sediment transport to flow fluctuations when FrZ1. The condition FrZ1 is also given a theoretical basis

using arguments from surface roughness.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Scaling relationships are frequently observed in

geophysics, such as frequency–magnitude relation-

ships of earthquakes (Turcotte, 1997, 2004), the

power spectrum of turbulence (Kolmogorov, 1941),

or peak flow frequencies in rivers (Gupta, 2004). Such

relationships may be derived from, e.g. fractal

structures, cellular automata, or dimensional analysis

(Kolmogorov, 1941). When dimensional analysis

suggests a scaling relationship, additional theoretical

developments are usually sought.

Experimental work by Foufoula-Georgiou and

Sapozhnikov (2001) on the dynamics of braided
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streams and their constantly shifting channels have

shown a very consistent spatio-temporal scaling

result, that the length of a channel, z, is proportional

to the square of its lifetime, t2, or

2

t2
Z constant (1)

The lifetime of a channel is the length of time

that it is active. Observations indicate that dynamics

of smaller channels is regulated by boundary

conditions imposed by larger channels (Foufoula-

Georgiou and Sapozhnikov, 2001). This may be

interpreted as complexity, i.e. that the system

dynamics be constrained importantly by the bound-

ary conditions.

Expressed as dimensional analysis, rather than as

variables with specific interpretation, the scaling result

of Foufoula-Georgiou and Sapozhnikov (2001),
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Eq. (1), looks like

X

T2
Z constant (2)

with X length and T time. We will argue that for

braided streams the Froude number, Fr, is a constant,

F2
r Z

u�2

2gh
Z constant (3)

In Eq. (3) u* is the friction velocity, g is the

acceleration due to gravity, and h is the depth of

stream. Dimensional analysis of Eq. (3) also yields

Eq. (2); since g is a constant acceleration, the

combination of units in u*2/h must be also. Constant

acceleration means the constancy of a ratio of length to

time squared, Eq. (2). The equivalence of the two

results of dimensional analysis suggests that transport

dominated by constant Froude number may play a role

in the dynamics of stream braiding.

The suspicion is strengthened by observations in

steep, sand-bed channels, as found on high-energy

Oregon beaches and in lahar runout channels

draining Mt. Pinatubo following the 1991 eruption

(Grant, 1997). In these channels, the Froude

number of active channels and braids was generally

very close to 1 (Fig. 1). The standing patterns
Fig. 1. Braided lahar runout channel, Pasig-Potrero River, Philippines. Note

flow conditions (Tinkler, 1997a,b).
evident in the figure occur in steep, coarse grained

channels and are diagnostic of FrZ1 (Tinkler,

1997a,b). When Fr dropped below 1, rapid channel

silting led to channel abandonment and establish-

ment of alternate channels. In this context we

mention that there is extensive literature relating to

optimization principles and FrZ1 (Schoklitz, 1937;

Inglis, 1947; Lamb, 1945; Jaeger, 1956; Chow,

1959; Chang, 1979; Rodriguez-Iturbe and Rinaldo,

1997; Huang and Nanson, 2000; Huang et al.,

2003). The principle of maximum sediment trans-

porting capability (Kirkby, 1977) would, for

supercritical flow, lead to FrZ1. In fact recent

work has extended the optimization framework to

determine that FrZ1 also governs channels with

friction and sediment transport (Huang and Nanson,

2000; Huang et al., 2003), though, for a theoretical

treatment such as proposed here it is a drawback

that these authors treated sediment transport

empirically.

In the following, we look for a way to use a new

theoretical approach to sediment transport in turbulent

flow to find relationships between various length

scales in fluvial sediment transport that account for an

equivalence between Eqs. (1) and (3) that extends

beyond mere dimensional analysis.
standing wave patterns in each of the braids, indicating near-critical
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2. Theoretical background
2.1. Probabilistic transport formulation

We consider an energy-based probabilistic

approach to sediment transport introduced in Hunt

(1999). The basis for the approach is a conceptualiz-

ation of a stream as a collection of “bursts” of energy

generated by flow turbulence. The initial ansatz was

that such kinetic energy bursts follow Boltzmann

statistics. The transfer of the kinetic energy to

particles was assumed to occur suddenly, like the

transfer of energy from the electromagnetic field (as

photons) to electrons. If sufficient, this energy could

then lift the particle over a potential barrier, entraining

it in the turbulent flow. The argument of the

exponential in the Boltzmann statistics was written

as a ratio of a gravitational potential energy and a

turbulent flow kinetic energy, analogous to the

Boltzmann factor defining the distribution of mol-

ecules with height above the earth’s surface (Reif,

1965).

The relevant potential energy for a particle of

density r and volume V is (r-rw)Vgy, where rw is the

density of water and y is the height lifted from its

stationary position on the bed. The bed stress,

GZ
1

2
rwu�

2 (4)

also has units of kinetic energy density and, multiplied

by V, gives the expected energy in a volume V at the

level of the river bed. The analog to the Boltzmann

factor was constructed as,

PZ exp
KVðrKrwÞgy

1
2
rwu �

2 V

" #
(5)

Subsequent development in (Hunt) 1999 demonstrates

that the argument of Eq. (5) is correct, and provides

evidence that the functional form is reasonable. For

example, assume that all particles on the bed have the

same diameter, d. In order for a particle to be

entrained into the flow, yfd but P drops from near 1

to near 0 at a radius d proportional to the square of the

friction velocity, u*2; this is in complete accord with

the Shields’ diagram.

Note that the general results for entrainment given

below do not depend on the functional form of Eq. (5),
only that P be a rapidly varying function of the given

argument. On the other hand, the specific results

for the roughness do depend on the functional form of

Eq. (5), and may be in accord with empirical results

summarized by Topping (1997).
2.2. Rate equation and rates

In Hunt (1999), P is used to set up a one-

dimensional rate equation to determine the equili-

brium particle size distribution on a river bed,

KPBNbðdÞCA½NðdÞKNbðdÞ�Z 0 (6)

in which turbulent settling and entrainment rates are

equal for each particle size.

In Eq. (6) PB is the entrainment rate and A the

settling rate, (both in probability per unit time) N(d)

the number of particles of diameter d present, and

Nb(d) the fraction of those on the bed of the stream. B

was chosen as,

BZ
u�

d
(7)

the inverse of the lifetime of an eddy of the

appropriate size. The inverse of B, d/u*, is also

known as the bursting period, consistent with the

interpretation that the energy is provided through

kinetic energy bursts or fluctuations. The settling rate,

A, was obtained by setting gravitational and turbulent

forces equal,

d2rwvy
u�

y
d Z ðrKrwÞd

3g (8)

with vy the vertical velocity of the particle. A particle

lifted into the stream a height ym, can then settle out

according to Eq. (8). The time of settling, t, is

proportional to an integral of the inverse of the

vertical velocity from the maximum height of

entrainment, ym, to the bed height, y0,

AK1f tZ

ðym
y0

dy

vy
(9)

The result of the integration, using Eq. (8) for the

vertical velocity, is,

Af tK1 Z
ðrK1Þg

u�
1

ln ym
y0

� � (10)
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2.3. Sediment flux

Eqs (9) and (10) were utilized to find a one-

dimensional equation for the effective downstream

transport velocity of a particle of diameter d, provided

d is small enough to be entrained (Hunt and

Papanicolaou, 2003). To use Eq. (10) an explicit

expression for ym must be obtained.

Suppose a particle receives more kinetic energy

from the stream than the minimum required for

entrainment. Then ym can be found by setting the

excess kinetic energy equal to the potential energy at

the maximum height of entrainment (Hunt and

Papanicolaou, 2003),

ym Z
1

r

ðu�Þ2

2g
K ðrK1Þd

� �
Z

1

r
½F2

r hK ðrK1Þd�

(11)

After substituting Eq. (11) into Eq. (10) for the

distance per entrainment, we multiply by u*/d, the

attempt frequency, to obtain a quantity proportional to

the total distance traveled (Hunt and Papanicolaou,

2003),

Lf
u�3

gd
ln

u�2

gy0
K

d

y0

� �
(12)

Since the units of the right hand side of Eq. (12) are

velocity, Eq. (12) gives an effective transport velocity.

Subsequent comparison with both experimental and

field data for travel distance (Hunt and Papanicolaou,

2003), showed that the power of u* in the correct

result must be reduced by 1, i.e. meaning that the

unknown proportionality factor in Eq. (12) was

proportional to the inverse of u*. If y0fd50 (the

median particle size on the bed) one can then write,

Lf
u�2

gd
ln

a0u�2

gd50
K

d

bd50

� �
; LZ

CG

d
ln

aG

d50
K

d

bd50

� �
(13)

In Eq. (13) a, a 0, b, and C were numerical parameters

(Hunt and Papanicolaou, 2003). While the values of a,

b, and C in the second formulation of Eq. (13) were

not predicted, they were consistent across different

scales and from field to lab experiments (Hunt and

Papanicolaou, 2003). Eq. (13) was shown (Hunt and

Papanicolaou, 2003) to give results in agreement with
both field observations (De Vries, 2000) and exper-

iment (Knapp, 2002).

2.4. FrZ1 and surface roughness

The theoretical reason for choosing Fr as approxi-

mately 1 (Hunt, 1999) was as follows Using P, an

expression was derived (Hunt, 1999) for the rough-

ness of a stream bed with a single particle size. The

root mean square fluctuation in bed elevation for high

entrainment probability, consistent with FrO1, was

found to be,

d

ln1=3 ru�2

gdðrKrwÞ

h i (14)

The situation for low entrainment probabilities,

Fr!1, is discussed below. Expression (14) was then

identified with y0 and substituted into the vertical

velocity distribution:

vs Z u � ln
h

y0

� �
(15)

for the velocity, vs, at the water surface yZh (Hunt,

1999). Consistent with the present 1D treatment, the

product of vs and h was set equal to the flow per unit

width, q. The resulting expression for v(h) as a

function of q was similar to that obtained from

minimization of the specific energy. Thus it was

suggested (Hunt, 1999) that the configuration to

which the bed evolves should be governed by the

principle that the stream transfers as much energy to

the bed particles as possible (for conditions that would

otherwise produce supercritical flow). Such maximum

roughness should also be consistent with maximum

reduction of Fr towards 1.
3. Critical and supercritical flow with a mobile

bed: limits on sediment transport

If Fr is nearly 1, Eq. (13) can be rewritten (Hunt

and Papanicolaou, 2003),

LZ
Ch

d
ln

ah

d50
K

d

bd50

� �
(16)

In this form, Eq. (16) can be used to show that: (a)

there is a maximum value of d that can be transported;
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(b) there is a minimum value of d, for which the

transport can be considered part of the bedload; and

(c) both of these values are proportional to the depth

of the stream, h. The logarithmic factor vanishes at

ah

d50
K

bd

d50
Z 1 (17)

and the maximum d entrained is equal to the

difference between a numerical factor times h and

d50. The minimum d that is part of the bed load is

found by setting the distance of travel in a time t equal

to the product of u* and t. For larger values of L

(smaller d), the particle would have to move down-

stream faster than the water just above the bed,

meaning that this formulation for bedload transport

must be replaced by a result for suspended load.

On a plot of L vs. log d, Eq. (16) shows up as

sigmoidal in shape with steep (negative) slopes at both

small and large d. Qualitatively, particles with large d

remain stationary, while those with small d are

transported out of the system. Thus in a given reach,

far from the source of the largest particles, the range

of particle sizes can be expected to be limited, with

the limits determined in terms of h. Thus, if flow

conditions persist, d50 must also be proportional to h,

and the consistency of the parameters in the field

measurements is not surprising.
4. Flow fluctuations and channel abandonment

Consider now a qualitative analysis of the stability

of flow and bed roughness against fluctuations for

FrO1. A fluctuation in Froude number associated

with a local reduction in u* would lead to slightly (on

account of the logarithmic dependence) larger values

of the equilibrium roughness. A larger roughness will

lead to slower flow and greater sedimentation to

entrainment ratio. This combination represents a (very

weak) positive feedback. The conclusion is also

generally consistent with the above deduction that

the surface roughness contributes to a tendency to

reduce Fr to 1, although it does not explain why Fr!1

should not be expected. This result can only be

understood if we look at the dependence of surface

roughness on Froude number for Fr!1.

Although no explicit result for the surface rough-

ness for small entrainment probabilities was obtained
in Hunt, 1999, Eq. (13) from that work can be used to

generate such an expression. The result is,

y0fd
dðrKrwÞ

hF2
r rw

exp
d½rKrw�

hF2
r rw

� �� �1=3
(18)

Note that for distributions of particle sizes we will

substitute the median particle size, d50, for d. Compare

Eq. (18) with Eqs. (3.58) and (3.59), empirical results

quoted by Topping (1997), and summarized as

y0 Z z0exp
5r

rw
ðh3siÞ

� �
(19)

where h3si is the time-averaged concentration of near-

bed suspended sediment and z0 is d50/30, if there is no

bedload saltation layer, but is roughly 1/20 of the

thickness of that layer, if it exists. While the

fundamental structure of Eq. (18) is thus compatible

with empirical formulations, it is not clear whether

Eq. (18) can actually serve as a predictor of field

observations. Eq. (18) for y0, a product of an

exponential and a power is, in the case of low

entrainment probabilities (Fr!1), clearly a much

more rapidly decreasing function of Fr.

Let’s consider the possibility that a stream channel

may become highly sensitive to small fluctuations in

flow as the Froude number drops to near 1. This will

require a somewhat more quantitative discussion. In a

steep channel with high sediment supply, flow tends to

be reduced to critical by developing bed roughness,

including bedforms (Grant, 1997). Here we consider

the mechanism for reducing Fr to near one by surface

roughness alone; inclusion of bedforms in this

formulation requires a much more complex treatment.

First consider the case of FrO1. A range of particle

sizes limited at high and low d by different

proportionalities to the channel depth is transported

along the bed, larger particles are either not present, or

not transported, and smaller particles are part of the

suspended load. Although Eq. (14) represents the

roughness for a single particle size, let’s take it as a

lowest order approximation for the roughness of a

distribution of particle sizes as well, but now with d50
substituted for d. Consider just the largest particle

suspended. From Eq. (13) one can write (analogously
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to Eq. (17),

dmax Z
rwu�

2

2ðrKrwÞg
Ky0 Z

rwu�
2

2ðrKrwÞ

Kd50 ln
K1=3 rwu�

2

2gðrKrwÞ

� �
ð20Þ

Although forFrO1, a reduction in u*generates a positive

feedback, the one-third power of a logarithm is a very

slowly varying function inu*, and it should be reasonable

to approximate y0 as a constant for most applications.

But if Fr%1, what does a reduction in u* produce?

Now the surface roughness is a much more rapidly

varying function of u* and we find,

dmax Z
rwu�

2

2ðrKrwÞg
Ky0 Z

rwu�
2

2ðrKrwÞg

Kd50
2gðrKrwÞ

rwu�
2

� �1=3

exp
2gðrKrwÞ

3rwu�
2

� �
(21)

The product of an exponential and a power can no

longer be approximated as a constant for any

application. Now the roughness term is a more rapidly

varying function of u* than is the bed stress term, u*2.

Therefore, a small drop in u* may produce a rapid

change in both surface roughness and the largest sized

particle that can be entrained. Of course it takes a finite

time for the roughness to respond to the change in u*.

But we expect that this can be accomplished by rapid

sedimentation through the relatively high sensitivity of

the bedload to u* on account of the logarithmic cut-off

in travel distance (Eq. (13)). Then the channel may be

expected to rapidly silt up and fill in, necessitating the

opening of a new channel. Thus there is a tendency for

Froude numbers of channels to be reduced slowly

through feedbacks to near FrZ1, but then for the

feedback to accelerate rapidly when the Froude

number drops below 1, so that channels with Fr!1

are quickly abandoned and effectively isolated from

the system. This combination of factors should tend to

accentuate the occurrence of channelswithFr near 1, as

well as to rapidly remove channels withFr!1 from the

system. According to empirical observations (i.e.

Ergenzinger, 1987; Grant, 1997), this is exactly what

occurs. Vincent and Smith (2001) inferred through

both modeling and field work that the longitudinal

profile of alluvial channels alternated from supercriti-

cal to subcritical flow with mean values of Fr over
a reach equal to 1. The accompanying morphology

alternated from wide and shallow to narrow and deep.

The wide shallow portion changed from low gradient

to high gradient, with the largest gradients just

upstream from the subcritical flow regions. Channel

branching occurred only in the upper portions of the

supercritical flow regions, with smaller channel

gradients and, it would appear, the values of Fr nearest

1. These authors asserted that FrZ1 could be used to

forecast flood threats in the southwestern USA.

Physically, then, one develops the picture that it is

difficult to maintain supercritical flow for steep

channels with mobile beds. The tendency for FrZ1

makes channels especially sensitive to small fluctu-

ations in flow, which could be brought about by a

random coincidence of sedimentation of several larger

particles, analogous to grain flow through a (narrow)

hopper. The sensitivity to flow fluctuations at a

critical value of the Froude number may allow an

analysis based on self-organized criticality concepts

(Sapozhnikov and Foufoula-Georgiou, 1996, 1999).
5. The Spatio-temporal scaling

We bring this analysis together by considering how

the previous discussion of transport dynamics and

hydraulics gives rise to a characteristic spatio-

temporal scaling for braided rivers. Return to the

condition that FrZ1. This condition implies that

ðx=tÞ2

2gh
Z 1 (22)

where x and t are the distance and time of fluid motion

near the bed, respectively. Note first that h and L are

proportional to each other. Then consider that if the

total distance of transport of particles, L%z, that tzt.
If the maximum value of L (for the smallest d values)

is equal to z, then xZz as well. Under the single

condition, then, that LmaxZz, we derive,

ðx=tÞ2

2gh
f

ðLmax=tÞ
2

Lmax

f
z

t2
f1 (23)

Clearly, if LmaxOz, and the particles get into another

channel, the transport distance equation must be

constructed with two terms, one for each channel. But

this level of complication is beyond that of the present
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paper. In any case, it would seem that the further a

channel is able to transport particles, the longer it

should be able to extend.
6. Conclusions

The scaling of channel length z to channel lifetime, t

in braided streams is known to follow zftK2. Constant

Froude number implies fromdimensional analysis that a

generalized length over a time squared, X//T2, is a

constant. We show that a probabilistic formulation for

sediment transport is capable of providing the link

between the Froude number scaling and the spatio-

temporal scaling of channels in braided streams. The

same theoretical framework has already been used to

provide a basis for the condition FrZ1. This theoretical

framework also appears to provide a mechanism for the

termination of individual channels due to their sensi-

tivity to flow fluctuations. The theoretical results appear

to be consistent with field observations. Further work

needs to address explicit calculations of the probability

that fluctuations in sedimentation can block channels of

a given size at the appropriate frequency, as well as

consider the dynamic role of bedforms in affecting flow

resistance, thus accentuating the tendency for channels

to maintain critical flow. In addition it will be necessary

to determine whether theory and experiment require

FrZ1, orwhetherFr near one is sufficient togenerate the

observed spatio-temporal scaling.
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