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Abstract

Important goals for studying dam removal are to learn how rivers respond to large and rapid
introductions of sediment, and to develop predictive models to guide future dam removals.
Achieving these goals requires organizing case histories systematically so that underlying
physical mechanisms determining rates and styles of sediment erosion, transport, and
deposition are revealed. We examine a range of dam removals predominantly in the western
US over the last decade, and extract useful lessons and trends that can be used to predict the
response of rivers to future removals.
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7.1 Introduction

Over the past 15 years, dam removal has evolved from a
radical idea to an established approach for restoring geo-
morphic and ecologic function of rivers. In the United States
in particular, dam removal has become a widespread tech-
nique for removing obstructions to fish migration and sedi-
ment transport, restoring normative flow and temperature
regimes, and reconnecting upstream and downstream river
reaches. Almost 1,000 dams have been removed in the U.S.
in the past 100 years, with over half of these removals
occurring in the last 10 years (Service 2011). Most dams
removed are generally less than 15 m high, although recently
some larger dams up to 70 m high have been removed (Doyle
et al. 2003b; Sawaske and Freyburg 2012).

Our scientific knowledge of how rivers respond to dam
removal is expanding rapidly. Most scientific studies have
focused on the sediment-related effects of individual dam
removals, including detailed case studies in Oregon (Stewart
and Grant 2006; Major et al. 2012; Walter and Tullos 2010),
and across theMidwest and Northeast (Sawaske and Freyberg
2012). While findings from individual dam removals have
been synthesized into broader and more generalized trends,
most syntheses have described sediment evacuation from
upstream reservoirs, with less attention given to how the rivers
processed the sediment released downstream.

7.2 A Coupled Upstream/Downstream
System

Dam removal intrigues river engineers and fluvial geomor-
phologists because it represents a coupled upstream/down-
stream problem of erosion, transport, and depositional fate of
sediment. Removing a dam lowers the base level of the river
upstream of the dam, increasing the hydraulic gradient
through the former reservoir and subjecting sediments stored
in the reservoir to fluvial erosion and entrainment. The style
of resulting erosion depends in part on the style and rate of
removal. Small dams whose reservoirs are full of sediment
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are often removed rapidly, instantly creating a knickpoint at
the former dam crest. This knickpoint subsequently incises
upstream through the stored sediments, typically downcut-
ting and widening its channel as it proceeds upstream (Doyle
et al. 2003a; Stewart and Grant 2006; Downs et al. 2009;
Major et al. 2012). If the dam is removed in stages, typically
because the dam is large or the reservoir is only partially
filled with sediment, the removal of each stage or horizontal
level of the dam lowers base level a corresponding incre-
ment. With reservoirs partially filled with sediment this
lowered base level initiates reservoir drawdown and reacti-
vation of the upstream sediment delta that typically forms
where the upstream river enters the reservoir (Bromley et al.
2011). As the reservoir level continues to lower, delta
progradation proceeds downstream, transporting and rede-
positing sediment along the reservoir length until the ever-
diminishing dam crest is reached. This progradation also
results in grain sorting of the stored and re-entrained sedi-
ment, with fine sediment released into the water column as
suspended load, which is exported before the coarser bed-
load fraction reaches the crest of the lowered dam.

In case of either knickpoint retreat or delta progradation,
the volumetric flux and grain size of sediment exported from
the reservoir, determines the downstream response below the
former dam site. Key upstream questions are how much
sediment of what grain size will be eroded, what processes
are responsible, and how fast will it be exported. Key
downstream questions include how far the different grain
sizes of exported sediment will be transported under what
hydrologic conditions, where will it be deposited, and what
effect will it have on channel morphology. While numerical
and physical models have shown very encouraging results in
addressing these complex questions (e.g., Grant et al. 2008;
Cui and Wilcox 2008; Downs et al. 2009), most removals
will not have access to these sophisticated approaches. Here
we present empirical results useful in anticipating the con-
sequences of dam removals.

The volume of sediment released due to dam removal is a
first order control on the downstream response. Up until
2006, most of the dams removed were small and the

sediment available for release during any dam removal was
less than 105 m3 (Fig. 7.1). Recently, sediment available for
release following dam removal has exceeded that by two
orders of magnitude, with the largest release to date asso-
ciated with removal of Glines Canyon and Elwha Dams on
the Elwha River in Washington State. Prior to this, virtually
all removals involved either pre-removal excavation of
stored sediment, or rapid removal of the structures, releasing
sediment that had entirely or mostly filled the reservoirs. The
Elwha removals involve staged, progressive dam lowering,
and reservoirs partially filled with sediment.

7.3 Upstream Reservoir Erosion

We explore controls on rate and style of upstream reservoir
erosion, specifically what controls how much sediment is
removed over what time period. We utilize a recent synthesis
of data from 12 small dam removals across the US (Sawaske
and Freyburg 2012), and supplement their Fig. 7.5b with
data from 4 additional dam removals: Condit, Savage Rap-
ids, Elwha, and Glines Canyon (Fig. 7.2). In the most gen-
eral terms, the sediment flux rises rapidly to an asymptote
that ranges from less than 10 % to greater than 70 % of the
initial sediment stored in the reservoir.

If we group the data by the style of removal (staged versus
instantaneous) and the predominant grain size of the stored
material (cohesive sediments, saturated fines, sand, gravel),
several patterns emerge. First, the slowest erosion rates
accompany staged removals. This is consistent with down-
stream process of delta progradation that moves more slowly
than knickpoint retreat. After 10 years, only 10 % of the
sediment stored behind the former Stronach dam in Michigan
has been eroded (Burroughs et al. 2009). Among the rapid
dam removals, the least volumes of stored sediment were
eroded when the material was predominantly cohesive fines
and clays; eroded volumes represent only 10 % of the initial
stored sediment even a year after removal. Reflecting the
fastest erosion rates were saturated deposits of non-cohesive
fine sediment at Condit Dam that failed catastrophically
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Fig. 7.1 Estimated reservoir
sediment stored behind selected
dams prior to removal. (Major
et al. 2012; unpublished data)
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during the rapid drawdown of the lake following instanta-
neous removal (O’Connor et al. 2012). Extraordinarily high
sediment flux transformed the river itself into a hypercon-
centrated mudflow. Sediment erosion rates for non-saturated
sands and gravels fall somewhere in the middle. Erosion rates
were faster where sands comprised[55 % of the material
compared to where the material was primarily gravel, sug-
gesting that for non-cohesive, non-saturated sediment, the
finer the material the faster the erosion rate.

There is evidence that erosion rates are not especially
sensitive to flow magnitude and sequence, although the data
are too sparse to answer this question definitively. Removal
of Marmot Dam in Oregon was during relatively low flow
conditions, yet approximately 20 % of the stored reservoir
volume of sand and gravel was eroded in the first 48 h
(Major et al. 2012). Winter flows in the first year after
removal were less than half of the mean annual flood, yet
eroded approximately 50 % of the reservoir sediment.
Higher flows the following year increased cumulative total
reservoir erosion to 63 %, indicating diminishing effective-
ness despite increasing flow magnitudes. Had those higher
flows happened earlier, Major et al. (2012) suggest that the
same endpoint of total reservoir erosion would have been
reached, only sooner.

7.4 Downstream Geomorphic Response

Sediment eroded from reservoirs is subsequently transported
through river reaches downstream of the former dam site. The
character, magnitude, and spatial distribution of downstream
geomorphic response to the removal is determined by the
style of transport and deposition of the reservoir sediment. At

Marmot Dam, a detailed sediment budget was constructed to
account for sediment released during removal (non-cohesive
sand and gravel) and track its downstream progress (Major
et al. 2012). One broadly applicable finding is that fine and
coarse sediments have different fates. The fine sand fraction
was transported many 10s of kilometers downstream and out
of system without leaving a clear morphologic signal or
response; most of the coarse fraction of gravel and cobbles
was only transported several kilometers before being rede-
posited, resulting in bed aggradation of more than 3 m. The
broad characteristics of these different behaviors are captured
by current mixed-grain size transport models.

This critical question of how far downstream will the
sediment be transported relates to both the volumetric flux
out of the former reservoir (i.e., sediment supply) and the
river’s transport capacity; the grain size distribution is also a
factor as noted above. To begin to tie these factors together,
we developed a dimensionless ratio E*:

E� ¼ VRFA

VA

where VR is total sediment volume or mass stored in the
reservoir (m3 or tons), FA is fraction of reservoir volume
eroded in first year and VA is background annual sediment
flux (m3 or tons). E* expresses the annual amount of sedi-
ment eroded from a former reservoir in relation to the
background (pre-dam or pre-removal) annual sediment flux
for the river where the dam was located (Fig. 7.3).

We explore the utility of E* as a means of predicting
patterns of downstream sediment transport, using a subset of
recent dam removals (Fig. 7.3). Examining downstream
transport distances, defined by field evidence of either
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deposition (coarse) or transport (fine) for coarse and fine
fractions of eroded sediment for sites arrayed by first-year
E* values reveals several interesting patterns (Fig. 7.4).
First, E* does a better job of predicting the distance that
coarse sediment travelled than fine sediment. Fine sediment
was transported far downstream of the dam removal site as
suspended load. Second, transport distance for coarse frac-
tions in the first year proceeds more or less linearly with E*.
Condit appears an outlier to this trend because the down-
stream reach of river is only 5 km long before it enters the
much larger Columbia River, where the sediment signal no
longer traceable. Transport distances for coarse sediment
will likely increase in subsequent years.

7.5 Lessons Learned

In the past 15 years, the science of predicting geomorphic
response of rivers to dam removal has improved signifi-
cantly. While this paper has only touched on some of the
more salient lessons, several points stand out that may be
useful to guide future removals. The case lore has given us a
dramatically improved understanding of controls on the
tempo and style of both upstream reservoir erosion and
downstream fate of sediment. These can be viewed in terms
of hierarchies of control on key geomorphic processes. For
upstream reaches, key controls in order of decreasing
influence on the rate and volume of sediment eroded are: (1)
how the dam is removed (quickly or slowly); (2) whether the
stored material is cohesive or non-cohesive; and (3) the
overall grain size of the deposit (coarse or fine).
The sequence of flows after dam removal may be important
in determining the rate and timing of sediment efflux but is
unlikely to control the total volume of reservoir sediment
eroded.

For downstream reaches, the key controls on the fate of
eroded and transported sediment are: (1) the grain size of the
sediment (coarse or fine); and (2) the volume of sediment
delivered from upstream relative to the river’s capacity to
transport sediment (E*). An additional control not captured
by E* is the longitudinal profile and morphology of the
downstream channel in terms of variations in opportunity to
transport or store sediment. Overall, we’ve learned that the
volume and grain size of the eroded sediment strongly
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dictate the downstream channel response. The volume, in
turn, is closely related to how the dam is removed.

Dam removals represent a full-scale, real-time experiment
on how rivers respond to changes in sediment supply and
base level. These case studies of dam removals provide a
growing empirical database where the range of fluvial
responses can be observed, hypotheses proposed and tested,
and numerical and physical models validated. All of these
complimentary approaches—empirical, numerical, and
physical—are creating a predictive framework that can guide
future dam removals, and help river managers predict the
consequences on river resources.
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